Georgia Standards of Excellence
High School Curriculum Map
Course Title: IB Chemistry SL
District Abbreviation: SCI505-506SL
State ID: 40.05501

First Semester

<table>
<thead>
<tr>
<th>Unit 1</th>
<th>Unit 2</th>
<th>Unit 3</th>
<th>Unit 4</th>
<th>Unit 5</th>
<th>Unit 6</th>
<th>Unit 7</th>
<th>Unit 8</th>
<th>Unit 9</th>
<th>Unit 10</th>
<th>Unit 11</th>
<th>Unit 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 Weeks</td>
<td>2 Weeks</td>
<td>4 Weeks</td>
<td>4 Weeks</td>
<td>3 Weeks</td>
<td>2 Week</td>
<td>3 Weeks</td>
<td>2 Weeks</td>
<td>3 Weeks</td>
<td>3 Weeks</td>
<td>4 Weeks</td>
<td>4 Weeks</td>
</tr>
</tbody>
</table>

GSE Standards:
- SC1a-e, g
- SC2a-e
- SC3a-e
- SC4a-c
- SC5a,b
- SC6f-h
- SC5c

IB Standards:
- 2.1
- 2.2
- 3.1
- 3.2
- 4.1
- 4.2
- 4.3
- 4.4
- 4.5
- 6.1
- 7.1
- 8.1
- 8.2
- 8.3
- 8.4
- 8.5
- 9.1
- 9.2
- 10.1
- 10.2
- 11.1
- 11.2
- 11.3

Learning Intentions:

Topical Focus:
- Nuclear atom
- Configuration
- Periodic table
- Trends
- Ionic bonding & structure
- Covalent bonding & structure
- Intermol
- Particulate nature of matter
- Chemical change
- Mole concept
- Collision theory
- Rates of reaction
- Equilibrium
- Effects on equilibrium
- Theories of acids & bases
- Properties of pH
- Energy cycles
- Entropy
- Spontaneity
- Oxidation
- Reduction
- Functional groups
- Uncertainty
- Error
- Graphical techniques
- Spectroscopy
- A:Materials
- B:Biochemistry
- C:Energy
- D:Medicinal Chemistry
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>proton</td>
<td>group</td>
<td>anion</td>
<td>homo/heterogeneous</td>
<td>rate of reaction</td>
<td>Bronstead-Lowry</td>
<td>temperature</td>
<td>reduction</td>
<td></td>
</tr>
<tr>
<td>electron</td>
<td>quantum number</td>
<td>ionic bond</td>
<td>mole</td>
<td>activation energy</td>
<td>Lewis acids</td>
<td>endothermic</td>
<td>oxidizing & reduction</td>
<td></td>
</tr>
<tr>
<td>neutron</td>
<td>metal number</td>
<td>lattice</td>
<td>amu</td>
<td>energy</td>
<td>amphiprotic conjugate pairs</td>
<td>exothermic</td>
<td>functional groups</td>
<td></td>
</tr>
<tr>
<td>e cloud</td>
<td>nonmetal</td>
<td>IUPAC</td>
<td>molar mass</td>
<td>catalyst</td>
<td>standard state</td>
<td>saturated</td>
<td>saturated</td>
<td></td>
</tr>
<tr>
<td>nuclear notation</td>
<td>metalloid</td>
<td>covalent bond</td>
<td>empirical formula</td>
<td>equilibrium, equilibrium constant, reaction quotient</td>
<td>specific heat</td>
<td>unsaturated</td>
<td>aromatic structures</td>
<td></td>
</tr>
<tr>
<td>isotope</td>
<td>trends</td>
<td>bond strength & polarity</td>
<td>molecular formula</td>
<td></td>
<td>Hess’ Law</td>
<td>anode</td>
<td>alkenes</td>
<td></td>
</tr>
<tr>
<td>line spectra</td>
<td></td>
<td>Lewis structure</td>
<td>limiting & excess reactants</td>
<td></td>
<td>bond enthalpy</td>
<td>cathode</td>
<td>alcohols</td>
<td></td>
</tr>
<tr>
<td>orbital SPDF</td>
<td></td>
<td>octet</td>
<td>exp. yield</td>
<td></td>
<td>ionic product constant</td>
<td>electrolytic cells</td>
<td>halogeno-alkanes</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>resonance VSEPR</td>
<td>theoretical yield</td>
<td></td>
<td>strong vs weak ??</td>
<td>benzene</td>
<td>polymers</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>London dispersion</td>
<td>Avogadro’s Law</td>
<td></td>
<td>acid deposition</td>
<td></td>
<td>mass spectrometry</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>dipole</td>
<td>ideal gas</td>
<td></td>
<td>acid deposition</td>
<td></td>
<td>index of hydrogen deficiency</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>H bonding</td>
<td>Molar solution</td>
<td></td>
<td></td>
<td></td>
<td>mass spectrometry</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>metallic bond alloys</td>
<td>standard solution</td>
<td></td>
<td></td>
<td></td>
<td>PNMRS</td>
<td></td>
</tr>
</tbody>
</table>

Reading Selections/Extensions:
Each unit integrates laboratory experiences and field work using the process of inquiry.

There are several strategies that are common throughout the units such as the use of a laboratory notebook, written lab reports, common teaching strategies, and written assignments relative to technical and seminal documents. Lab safety is stressed in all practical situations. Many standards are recursive in nature and will be revisited in different units throughout the year. The Practical Scheme of Work category (40 hours) is addressed throughout the year in practical activities, internal assessment, and group 4 project.

Resources

www.georgiastandards.org