The Quadratic formula is a way to solve a quadratic function for the value of x. In order to solve an equation using the quadratic formula, the equation must be set equal to zero. Sometimes a quadratic is not easy to factor or maybe you do not want to factor.

- Set the equation in the form \(ax^2 + bx + c = 0 \)
- identify the \(a \), \(b \), and \(c \)
- substitute them into the equation and solve.

What does that “±” symbol mean?

It means that there are two solutions. The quadratic equation could be written as two separate equations:

\[
 x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
\]

The \(a \) will always be the coefficient with the \(x^2 \). The \(b \) is always the coefficient with the \(x \) and the \(c \) is always the constant.

Example: Solve \(x^2 + x - 6 = 0 \)

<table>
<thead>
<tr>
<th>Set Equation = 0</th>
<th>(x^2 + x - 6 = 0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>(b)</td>
</tr>
<tr>
<td>(a = 1, b = 1) and (c = -6)</td>
<td>(x = \frac{-1 \pm \sqrt{(1)^2 - 4(1)(-6)}}{2(1)})</td>
</tr>
<tr>
<td>Step 2: Substitute the (a), (b), and (c) into the quadratic formula.</td>
<td>(x = \frac{-1 \pm 1 + 24}{2} = \frac{-1 \pm 25}{2} = \frac{-1 \pm 5}{2})</td>
</tr>
<tr>
<td>Step 3: Simplify the right hand side of the equation.</td>
<td>(x = \frac{-1 + 5}{2}) and (x = \frac{-1 - 5}{2})</td>
</tr>
<tr>
<td>Step 4: Create two separate equations, one with the “+” sign and one with the “−” sign.</td>
<td>(x = \frac{4}{2} = 2) and (x = \frac{-6}{2} = -3)</td>
</tr>
<tr>
<td>Step 5: Solve each of the equations.</td>
<td>The solution to the equation is (x = 2) or (x = -3)</td>
</tr>
</tbody>
</table>

Finally, we need to check our answer to make sure they work. We substitute each value back into the original equation to make sure it work.

\[
\begin{array}{ccc}
 x^2 + x - 6 &=& 0 \\
 (2)^2 + (2) - 6 &=& 0 \\
 4 + 2 - 6 &=& 0 \\
 0 &=& 0 & \checkmark \\
 x^2 + x - 6 &=& 0 \\
 (-3)^2 + (-3) - 6 &=& 0 \\
 9 - 3 - 6 &=& 0 \\
 0 &=& 0 & \checkmark
\end{array}
\]
Our solutions are correct: \(x = 2 \) or \(x = -3 \). These values can also be used to find the factors of \(x^2 + x - 6 = 0 \). To find the factors, take the answers and rewrite them so they are equal to zero. Take the first answer \(x = 2 \), and subtract 2 from both sides. This becomes \(x - 2 = 0 \). Take \(x = -3 \), and add 3 to both sides. This becomes \(x + 3 = 0 \).

\[
x^2 + x - 6 = 0 \text{ is factored into } (x - 2)(x + 3).
\]

Example 2: Solve \(5x^2 + 6x + 1 = 0 \)

<table>
<thead>
<tr>
<th>Set Equation = 0</th>
<th>(5x^2 + 6x + 1 = 0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1: Identify the (a, b,) and (c)</td>
<td>(a = 5, b = 6) and (c = 1)</td>
</tr>
<tr>
<td>Step 2: Substitute the (a, b,) and (c) into the quadratic formula.</td>
<td>(x = \frac{-6 \pm \sqrt{36 - 20}}{10} = \frac{-6 \pm \sqrt{16}}{10} = \frac{-6 \pm 4}{10})</td>
</tr>
<tr>
<td>Step 3: Simplify the right hand side of the equation.</td>
<td>(x = \frac{-6 + 4}{10} = -0.2) and (x = \frac{-6 - 4}{10} = -1)</td>
</tr>
<tr>
<td>Step 4: Create two separate equations, one with the “+” sign and one with the “-” sign.</td>
<td>(x = \frac{-6 + 4}{10} = -0.2) or (x = \frac{-6 - 4}{10} = -1)</td>
</tr>
<tr>
<td>Step 5: Solve each of the equations.</td>
<td>(x = \frac{-6 + 4}{10} = -0.2) or (x = \frac{-6 - 4}{10} = -1)</td>
</tr>
<tr>
<td>So the solution to the equation is (x = -0.2) or (x = -1)</td>
<td></td>
</tr>
</tbody>
</table>

Finally, we need to check our answer to make sure they work. We substitute each value back into the original equation to make sure it work.

\[
\begin{align*}
5x^2 + 6x + 1 &= 0 \\
5 \left(\frac{1}{5} \right)^2 + 6 \left(\frac{1}{5} \right) + 1 &= 0 \\
5 \left(\frac{1}{25} \right) - \frac{6}{5} + 1 &= 0 \\
\frac{1}{5} - \frac{6}{5} + 1 &= 0 \\
0 &= 0
\end{align*}
\]

\[
\begin{align*}
5x^2 + 6x + 1 &= 0 \\
5 \left(-\frac{1}{5} \right)^2 + 6 \left(-\frac{1}{5} \right) + 1 &= 0 \\
5 - 6 + 1 &= 0 \\
0 &= 0
\end{align*}
\]

We know that our solutions are correct. We had \(x = -1 \) and \(x = -\frac{1}{5} \). To find the factors, we take each of those solutions and rewrite them so that they equal 0. If we take \(x = -1 \) and rewrite it by adding 1 to both sides we get \(x + 1 = 0 \).

\(x = -\frac{1}{5} \) becomes just a little harder to set equal to zero. We need to multiply both sides of this equation by 5 to get rid of the denominator, so we will have \(5x = -\frac{1}{5} \Rightarrow 5x = -1 \).

Now we can take that equation, \(5x = -1 \), and add 1 to both sides. We now have \(5x + 1 = 0 \).

\[
5x^2 + 6x + 1 = 0 \text{ is factored into } (x + 1)(5x + 1)
\]
YOUR TURN

For the next three problems, identify the a, b, and c.

1. $7x^2 + 22x + 3$
 $a =$ $b =$ $c =$

2. $2x^2 + 7x + 6$
 $a =$ $b =$ $c =$

Identify the a, b, and c and then use the quadratic formula $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ to find the solution to the problems. Make sure you check your answers.

3. $x^2 + 16x + 28 = 0$

Identify the a, b, and c and then use the quadratic formula $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ to find the solution to the problems. Finally, use your solutions to write the factors of the quadratic.

4. $x^2 - 2x - 24 = 0$
Graphing Quadratics

Now we are going to look at graphing quadratics. Graphing functions is another way that you can find the factors to a quadratic. You have graphed linear functions, so you know that we can graph by creating a table. Let’s begin by looking at graphing \(y = 2x^2 - 2x - 12 \). When we graph quadratics, we should use at least 5 or 6 points in our table. Sometimes you need more and sometime less. Substitute in values for \(x \) and solve for \(y \).

<table>
<thead>
<tr>
<th>(x)</th>
<th>(y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2</td>
<td>0</td>
</tr>
<tr>
<td>-1</td>
<td>-8</td>
</tr>
<tr>
<td>0</td>
<td>-12</td>
</tr>
<tr>
<td>1</td>
<td>-12</td>
</tr>
<tr>
<td>2</td>
<td>-8</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

\[y = 2x^2 - 2x - 12 \]
\[y = 2(-2)^2 - 2(-2) - 12 = 2(4) + 4 - 12 = 8 + 4 - 12 = 0 \]
\[y = 2(-1)^2 - 2(-1) - 12 = 2(1) + 2 - 12 = 2 + 2 - 12 = -8 \]
\[y = 2(0)^2 - 2(0) - 12 = 2(0) + 0 - 12 = 0 + 0 - 12 = -12 \]
\[y = 2(1)^2 - 2(1) - 12 = 2(1) - 2 - 12 = 2 - 2 - 12 = -12 \]
\[y = 2(2)^2 - 2(2) - 12 = 2(4) - 4 - 12 = 8 - 8 - 12 = -8 \]
\[y = 2(3)^2 - 2(3) - 12 = 2(9) - 6 - 6 = 18 - 6 - 12 = 0 \]

Once we have our table, we now need to plot our points.

- **the points do not create a straight line**
- **the graph is symmetrical** If you folded the graph vertically (hotdog style) you would see that you can get the points to line up.
- **Connect the points.** The graph has a “U” shape. Quadratic function always have this type of shape.
- **If the “a” coordinate is positive, the graph will open upward.**
- **If the “a” coordinate is negative, the graph will open downward.** (The \(a \) will always be the coefficient with the \(x^2 \).)
- The zeros, where the graph crosses the x-axis or where \(x = 0 \) are the “factors” of the quadratic. This is another way that you can factor a quadratic.
Let’s look at another one: \(y = -x^2 + 2x + 3 \). Again, we will begin by creating a table of values. Remember you’re going to need between 5 and 6 values in your table. When picking your values, you are looking for the \(y \) to either change their signs or start to repeat. (Remember all of these equations will form a “U”.

\[
\begin{array}{c|c}
 x & y \\
-2 & -5 \\
-1 & 0 \\
0 & 3 \\
1 & 4 \\
2 & 3 \\
3 & 0 \\
\end{array}
\]

\[
y = -x^2 + 2x + 3 \\
y = -(2)^2 + 2(-2) + 3 = -4 - 4 + 3 = -5 \\
y = -(1)^2 + 2(-1) + 3 = -1 - 2 + 3 = 0 \\
y = 0^2 + 2(0) + 3 = 0 + 0 + 3 = 3 \\
y = -(1)^2 + 2(1) + 3 = -1 + 2 + 3 = 4 \\
y = -(2)^2 + 2(2) + 3 = -4 + 4 + 3 = 3 \\
y = -(3)^2 + 2(3) + 3 = -9 + 6 + 3 = 0 \\
\]

Now plot these points and connect them. Notice this time the graph is opening downward, because the \(a \), term of the quadratic is negative.

YOUR TURN For each of the following problems, create a table of value, plot the points, and then connect the points to create the graph of the quadratic.

1. \(y = 3x^2 \)
2. \(y = -2x^2 \)

<table>
<thead>
<tr>
<th>(x)</th>
<th>(y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2</td>
<td></td>
</tr>
<tr>
<td>-1</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

3. \(y = 2x^2 + 8x + 5 \)

<table>
<thead>
<tr>
<th>(x)</th>
<th>(y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-4</td>
<td></td>
</tr>
<tr>
<td>-3</td>
<td></td>
</tr>
<tr>
<td>-2</td>
<td></td>
</tr>
<tr>
<td>-1</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>