Summer is here! In order to keep minds and skills sharp, West Oak Lane students are required to complete the following activities over the summer months. Attached to this letter is a calendar with each activity listed by week. The activities alternate between Literacy and Math focuses. These skills are important to practice so that success can increase in the next school year. You will return the calendar included with all completed work by September 6th, 2019.

In addition to the activities outlined on the calendar, we have provided important focus skills to practice for both literacy and math this summer. Please review the focus skills using some of the suggestions provided each week. Again, this will significantly increase the chance of success in seventh grade!

LITERACY

In 7th grade students learn to analyze author’s craft across a wide range of genres. In 7th grade text students learn to identify choices the author has made as a writer, compare these choices to those of another author writing in the same genre or on the same subject, and critique the effectiveness of these choices. 7th grade readers can determine an author’s perspective in a text and are just beginning to speculate on how the different perspectives of authors shape the choices they make. In order to handle 7th grade text, students must be comfortable with the 16-20 academic words, words not used in everyday speech, and/or phrases per text.

Help your child prepare for 7th grade by asking your child to catch, or learn, a new word every day when he/she reads and by asking your child about the author’s point of view, or purpose, in the text they’ve read and how the author distinguishes his or her position from that of others.

MATH

Below is the required fluency for your grade level and the previous. Fluencies should be able to be solved quickly and correctly!

<table>
<thead>
<tr>
<th>Grade</th>
<th>Fluency</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Multi-digit division & Multi-digit decimal operations</td>
</tr>
<tr>
<td>7</td>
<td>Solve $px + q = r$, $p(x + q) = r$</td>
</tr>
</tbody>
</table>

Here are some ways to practice:
- make flash cards
- practice on KhanAcademy.org
- Practice on mobymax.com

Practice practice practice!
Create a free account on www.khanacademy.org for more fun practice in math this summer!!!
<table>
<thead>
<tr>
<th>Date</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>Read Civil Rights Activist: Dolores Huerta. Chunk the text and write 1-2 sentences summarizing what each section is about in the right margins. In the left margins record notes on how the cows treat Toro. Answer the text dependent questions.</td>
</tr>
<tr>
<td>25</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>SAT</td>
<td>FRI</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUN</td>
<td>2019</td>
<td>July</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Jefferson and Adams disagreed. Answer the text-dependent questions.

- Each section is double in the right margins. In the left margins, record notes on the issues that
- Read Final leg of Dakota access project. Chunk the text and write 1-2 sentences summarizing what
- Solved perseverance through the tasks. If you need support, videos on www.visionacademy.org can help!

- Each section is double in the right margins. In the left margins, record notes on the issues that
- Read California Teens Long Road. Chunk the text and write 1-2 sentences summarizing what
- Please see through the tasks. If you need support, videos on www.visionacademy.org can help!

Take the week to complete "A Home for Annie." Be sure to use the back of the page or a piece of scrap paper to be a problem solved.
CONGRATULATIONS! This grader will not see your next week. Be sure to pull all of your summer work together and hand it in to your teacher by September 6th.

NOTES

27. Complete Lesson 82. Complete Lesson 83. Complete Lesson 84.

44. Complete Lesson 133. Complete Lesson 134. Complete Lesson 135.

47. Complete Lesson 142. Complete Lesson 143. Complete Lesson 144.

Civil Rights Activist: Dolores Huerta

By Biography.com Editors and A+E Networks, adapted by Newsela staff
08/15/2016

Early Life

Activist and labor leader Dolores Huerta was born on April 10, 1930, in Dawson, New Mexico. She was the second child of Juan and Alicia (Chavez) Fernandez. The young family struggled. By the time Dolores was 3, her parents divorced, and her mother moved Dolores and her two brothers to Stockton, California. Dolores maintained a relationship with her father, who later became a union activist and a New Mexico state assemblyman. Juan's own political and labor activism later proved to be inspirational to Dolores.

When the family first arrived in Stockton, a farming community in the San Joaquin Valley, Alicia Fernandez worked two jobs to provide for the family. Dolores' grandfather, Herculano Chavez, took care of the children. Dolores' mother always encouraged her children to get involved in youth activities and be successful. Alicia Fernandez worked hard to provide music lessons and extracurricular activities for Dolores and her brothers. Dolores played violin and piano and took dance lessons. A good student, she was also a Girl Scout and won second place in a national essay contest.

Despite her achievements, Dolores experienced the racism many Mexicans and Mexican-Americans suffered from, especially those who were farmworkers. At school she was sometimes treated with suspicion and scorn. She was once accused by a teacher of stealing another student's work because the teacher was convinced that Dolores was incapable, due to her ethnicity. Her family's economic conditions improved with time. During World War II, Alicia Fernandez ran a restaurant and then purchased a hotel in Stockton with her second husband, James Richards. The businesses served the farmworkers and day laborers, welcoming the diversity of the area.

After graduating from Stockton High School in 1947, Dolores Fernandez went through a marriage, the birth of two children and a divorce. After a series of unsatisfying jobs, she completed a teaching degree at the University of Pacific's Delta College in Stockton. She briefly worked as an elementary-school teacher. She quit because she was so unhappy over the poor living conditions of her students, many of them children of farmworkers.

Determined to help, in 1955 she and activist Frank Ross co-founded the Stockton Community Services Organization (CSO). This grassroots group worked to end segregation, discrimination and police brutality and to improve the social and economic conditions of farmworkers. During this time, Dolores married Ventura Huerta, another labor activist. The couple had five children.

A Life Of Activism

In 1960, Dolores Huerta started the Agricultural Workers Association (AWA). She set up voter registration drives and lobbied politicians to allow non-U.S.-citizen migrant workers to receive public assistance and pensions and provide Spanish-language voting ballots and driver's tests. During this time, Huerta met Cesar Chavez, a fellow CSO official who had become its director. In 1962, both Huerta and Chavez lobbied to have the CSO expand its efforts to help farmworkers, but the organization was focused on issues affecting cities and could not move in that direction. Frustrated, they both left the organization. With Gilbert Padilla, they co-founded the National Farm Workers Association (NFWA). The two made a great team. Chavez was the inspirational leader and speaker, and Huerta was the skilled organizer and tough negotiator.
In 1965, the AWA and the NFWA combined. They became the United Farm Workers Organizing Committee, later known simply as the United Farm Workers (UFW). That year, the union took on the Coachella Valley grape growers. Chavez organized a strike of all farmworkers, and Huerta negotiated contracts. After five hard years, the UFW, now affiliated with the American Federation of Labor and Congress of Industrial Organizations, signed a historic agreement with 26 grape growers. The agreement improved working conditions for farmworkers, reduced the use of harmful pesticides and initiated unemployment and health care benefits. In the 1970s, Huerta coordinated a national plan to stop buying lettuce. It helped to create the political climate for the passage of the 1975 Agricultural Labor Relations Act. This was the first law to recognize the rights of farmworkers to bargain collectively.

During the 1980s, Dolores Huerta served as vice-president of the UFW and co-founded its radio station. She continued to speak for a variety of causes, advocating for a comprehensive immigration policy and better health conditions for farmworkers. In 1988, she nearly lost her life when she was beaten by San Francisco police at a rally protesting the policies of then-presidential candidate George H. W. Bush. She suffered broken ribs and a ruptured spleen.

Later Life

Dolores Huerta has been honored for her work as a fierce advocate for farmworkers, immigration and women. She received the Ellis Island Medal of Freedom Award and was inducted into the National Women’s Hall of Fame in 1993. That year proved to be bittersweet, as she also experienced the death of her beloved friend Cesar Chavez.

In 1998, she received the Eleanor Roosevelt Human Rights Award, a year before she stepped down from her position at the UFW. In 2002, she received the Puffin Nation Award for Creative Citizenship. The $100,000 prize provided her the means to create the Dolores Huerta Foundation. It brings organizing and training skills to low-income communities.

In 2012, President Barack Obama bestowed on Huerta her most prestigious award, the Presidential Medal of Freedom — the highest civilian award in the United States.

Huerta continues to lecture and speak out on a variety of social issues involving immigration, income inequality and the rights of women and Latinos.

Text Dependent Questions

Directions: Answer the questions below in complete sentences on loose leaf. Be sure to cite textual evidence.

1. Determine two or more central ideas in a text and analyze their development over the course of the text.

2. According to this text, what obstacles did Dolores Huerta overcome and how did those obstacles influence her life?
Trip to Mexico

Denine took a trip to Mexico. While she was there she had to use some of her math skills to understand distances and other units of measure, and to exchange money.

1. In Mexico people use pesos for money. There are about 12.8 pesos in 1 dollar. About how much is 1 peso worth in dollars? Show your work, and give your answer to the nearest hundredth of a dollar and the nearest cent.

2. Denine sees a scarf for 70 pesos and wants to know if it is in her budget for souvenirs. Use ratio reasoning to find the approximate cost of the scarf in dollars, to the nearest half-dollar. (There will be a small error from rounding the value of the peso.)
3. Denine goes on a tour to see the Pyramid of the Sun and the Pyramid of the Moon, located about 48 kilometers from Mexico City. There are about 1.6 kilometers in 1 mile. About how many miles are the pyramids from Mexico City? Use ratio reasoning to find the answer.

4. Denine reads that the Pyramid of the Sun is more than 71 meters tall. One meter is about 3.3 feet. About how tall is the pyramid in feet?

5. When Denine gets home, she wants to make a model of the Pyramid of the Sun. The base of the real pyramid is about 224 meters wide on each side. If she makes her model 24 inches wide at the base, about how tall will the model be? Use ratio reasoning to find the answer.
6. At a market Denine buys a bag of 6 mangoes for 15 pesos. What is the unit price for 1 mango?

7. Denine sees a 1.5-kilo block of cheese. If there are 2.2 pounds in 1 kilogram (kilo), what is the weight of the block of cheese in pounds?

8. One market sells a 3-kilogram bag of tortillas for 42 pesos, and another sells 2 kilograms of tortillas for 26 pesos. Which unit price is lower?
9. Gasoline in Mexico is measured in liters. One gallon is equal to 3.785 liters. How many liters would it take to fill a 12-gallon tank?

10. Denine learns that about 3 out of 10 people in Mexico are under the age of 15. What percent of the population is under the age of 15?

11. If the population of Mexico is about 116 million, approximately how many children under the age of 15 are in the country?
California teen's long road from foster care to Olympic pentathlon dreams

By San Diego Union-Tribune, adapted by Newsela staff
08/02/2016

BONSALL, Calif. — When describing 14-year-old Cindy Buenrostro, her parents and coaches call her fierce, determined and ultra-competitive. They also call her a survivor. Nine years ago, she escaped an abusive situation, and today it’s driving her toward her Olympic dreams.

Cindy Buenrostro is a five-sport athlete. She qualified this year for the USA Pentathlon program. The modern pentathlon involves swimming, horseback riding, fencing, running and shooting. Her dream is to make the Junior Olympics in two years and compete at the 2020 Olympic Games in Japan.

Cindy gets up at 5:30 every morning and starts her training day with a protein shake. Then she heads to the pool for the first of two hour-long daily swims. Next, she rides her horse, Star, for an hour or so at her parents’ ranch in Southern California. Cindy and her 8-year-old sister, Jaci were adopted seven years ago by Liz and Mauricio Buenrostro. Before that, they were in foster care.

A Life-Changing Brave Step

Cindy was just 5 years old when she showed up with a secret in the principal’s office at her elementary school. A friend of her birth mother was abusing her, and she bravely asked for help. Cindy, Jaci and an older sister were immediately removed from their home and placed in foster care. They lived separately in foster care for the next two years.

“My experience changed me in many ways,” Cindy said, thinking back. “The way I was acting, afraid of what to do in my future, I was lost. But I’m much more courageous now. I stand taller, supported by a lot of people who have heard my story.”

The Buenrostros met in their early 40s. It was too late to have their own children when they married 11 years ago, so they decided to adopt. When they heard the girls’ story, Liz Buenrostro said it touched a deep chord in her.

One of the first things the couple discovered when they brought the girls home in 2009 was that Jaci, then 2, had a learning disability. Knowing that horses were good for children with autism, they sold their home and moved to a ranch. Riding was healing for Jaci, but it was Cindy who connected most with the horses.

“She’s super-sensitive, and she gets both animals and people,” Liz said.

Giving Pentathlon A Shot

Through the Fallbrook Pony Club, Cindy became an accomplished horseback rider. Two years ago, she also started swimming with the Fallbrook Associated Swim Team. Head coach Sean Redmond said he noticed something about Cindy right away.

“My first impression was that after every set or practice she would come to me and say ‘what can I do to improve?’ Right there it showed me her willingness to learn and see how far she could go,” he said.
Redmond said that when he heard last fall that Cindy was also a horseback rider, he suggested the family consider the modern pentathlon.

"Whenever I meet kids who are good swimmers and horseback riders, I recommend it because they've already accomplished the two hardest skills. Nobody has ever taken me up on my recommendation until Cindy came along," he said.

Paying It Forward

Cindy got excited at the prospect of competing, and Mauricio Buenrostro, who once played for Mexico's national volleyball team, helped her plan a training, diet and fitness routine.

He has been working with her on running and target shooting. Cindy also started training last fall at the San Diego Fencing Center in Escondido.

In early January, she competed in all five sports for the first time at a West Coast Pentathlon camp in Palm Springs. She won a silver medal and earned a spot in the USA Pentathlon program.

Training for pentathlons is expensive and a near-full-time effort for Cindy and her parents. Cindy said she never forgets the difficulties she has had to go through to go from foster care to Olympic hopeful in just five years. To pay it forward, she and her parents organized their own pentathlon camp at the family ranch two months ago for 20 children in foster care. The kids rode horses, tossed water balloons and fenced with foam pool noodles.

"I did it because I wanted to show them what I've learned," Cindy said. "I was once in the position they are, and I know how it feels to not have a dream. With the right support and love, they can have an awesome dream."

Text Dependent Questions

Directions: Answer the questions below in complete sentences on loose leaf. Be sure to cite textual evidence.

1. Determine two or more central ideas in a text and analyze their development over the course of the text.

2. According to this text, what personality characteristics helped Cindy Buenrostro overcome obstacles in her life?
Cooperstown Bound

Mr. and Mrs. Isaac and their three children take a trip by car to Cooperstown.

1. The Isaacs live \(m \) miles from Cooperstown, and they drive 30 miles while they are in the town. Write an algebraic expression using \(m \) to show how many miles they drive from the time they leave home until they return. Explain your answer.

2. The total distance the Isaacs travel is 450 miles. Write and solve an equation to find \(m \), the distance from their home to Cooperstown.

3. The Isaacs’ car can go 30 miles on 1 gallon of gas. Write and solve an equation to find \(g \), the number of gallons of gas they use driving 450 miles.
4. On the interstate highway the Isaacs can drive at a steady 65 miles per hour. Fill in the table to show how far they travel in 1, 2, and 3 hours.

<table>
<thead>
<tr>
<th>Time t in hours</th>
<th>Distance d in miles</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

5. Make a graph using the numbers in your table, with time t on the x-axis and distance d on the y-axis.
6. Write an equation to tell how far the Isaacs travel, \(d \), in \(t \) hours on the interstate.

 Use your equation to figure out how far they go in \(1 \frac{1}{2} \) hours.

7. The Isaacs have budgeted \(x \) dollars per day for each of their 3 days at a hotel, and \(y \) dollars per day for food for each of the 3 days. Write two different expressions to give the total for hotel and food. Describe your expressions.

8. One of the highlights of their trip is a visit to the Baseball Hall of Fame. Let \(a \) = the cost of an adult ticket for the Hall of Fame. Let \(c \) = the cost of a child's ticket. Write an expression using \(a \) and \(c \) to tell how much it costs for all 5 people in the Isaac family to get tickets for the Hall of Fame. Explain your answer.

 The adult tickets cost \(\$19.50 \) each and the children's tickets cost \(\$7.00 \) each. Substitute these values into your expression and evaluate the expression to find the amount they pay for all the tickets.
9. The Baseball Hall of Fame opened in 1939. Write and solve an equation to tell a, how old the Hall of Fame is. Explain your answer.

10. They also visit the Farmers’ Museum. One of the exhibits at the Farmers’ Museum is the “Cardiff Giant,” a huge carved stone figure that was buried on a farm in New York in the 1860s as a practical joke and money-making scheme. George Hull paid $2,600 to have the figure carved and transported, and then he made $30,000 in a short time from people paying 50¢ each to see the giant. Write and solve an equation to find n, how many people came to see the giant during this time.

11. Tickets for the Farmers’ Museum are $12 for adults and $6 for children. A ticket for both the Farmers’ Museum and the Baseball Hall of Fame is x dollars for an adult and y dollars for a child. Write an expression to show how much the Isaac family can save by buying double tickets for everyone rather than individual tickets. (Also use the information in question 8.) You do not need to simplify the expression.

12. The Isaacs buy some souvenirs for s dollars. The sales tax is 8% of the cost, so the total for the souvenirs is $s + 0.08s$. Use the distributive property to write this amount a different way.
Final leg of Dakota Access project halted, yet neither side calls it quits

By PBS NewsHour, adapted by Newsela staff
12/14/2016

A standoff over the Dakota Access Pipeline will not end. Neither side is calling it quits after a decision by the U.S. Army Corps of Engineers to halt a final leg of the oil-carrying project and research alternate paths for the pipeline to take.

The Army Corps refused to grant the permit to build a section of the pipeline under the Missouri River near the Standing Rock Sioux Reservation. It was a decision that the Native American tribe celebrated. The agency ordered that alternate routes for the pipeline be explored.

The Standing Rock Sioux and supporters say the $3.8 billion oil pipeline disrupts sacred burial grounds and threatens the tribe’s main source of drinking water. They also say it violates the terms of an 1851 treaty with the U.S. government. Large crowds of protesters set up camp in North Dakota near the proposed route in August, refusing to leave until the project is stopped. Now, following the Army Corps’ decision, both sides are deciding on their next steps.

"Go Home And Be Safe"

David Archambault II is the Standing Rock Sioux tribal chairman. He told Reuters news agency that the protesters’ mission has been accomplished.

He then turned to their next major hurdle. With a new administration coming to Washington, D.C., it is an ideal time to educate the president-elect, Archambault said. Donald Trump is the president-elect. He is the person who was elected in November to be the new president. They want to help Trump “realize that what he has achieved is only because of the cost that our people have paid,” Archambault said.

Despite the cold weather and Army Corps decision, reports say protesters continue to show up at Standing Rock. Some took shelter in local hotels after blizzards blew through the main camp.

Archambault has said that protesters should leave the main camp as North Dakota grows colder this winter. “It’s time for everybody to go home and be safe,” he told news reporters.

Energy Is A Top Concern

A federal court, or a court interpreting U.S. laws, could still rule in favor of Energy Transfer Partners, the company building the pipeline. It could still order the Army Corps to grant a permit and let the company keep building. It is also possible that President Barack Obama could declare the federal land near the Missouri River a national monument. This declaration would force the builders to find another route, but it is unclear whether Obama has any plans to do so.

Trump has said he supports the pipeline. Trump’s spokesperson Jason Miller told news reporters that he will review the situation. Trump has nominated Scott Pruitt to lead the Environmental Protection Agency. Pruitt was formerly Oklahoma’s attorney general, or state lawyer. Scott Segal is a partner with Bracewell LLP, a government relations firm that works with the oil and gas industry. He told journalists that Pruitt will look at energy regulation and that some regulations are probably going to be changed.

Trump also recently formed a Native American Coalition, which is pro-business. New Mexico State Representative Sharon Clachischillage is one of the coalition’s 27 members. She said the Trump administration will “ease restrictions on American energy reserves worth trillions of dollars.” She said that will benefit Native Americans living in areas with abundant natural materials.
Pipeline Company Will Not Give Up

Kellyanne Conway works for Trump. She is expected to meet with the Canadian super PAC Alberta Prosperity Fund. A PAC is a political action committee, which raises money and contributes to political candidates or parties. A super PAC has fewer rules than a regular PAC. The Alberta Prosperity Fund called the future trip “a call to action for Alberta industry” whose work has been limited by regulation and public protests.

Energy Transfer Partners and others are also continuing their fight. The company said in a statement it is committed to completing the project and expects “to complete construction of the pipeline without any additional rerouting.”

Tribal council leaders have asked protesters to go home. However, some protesters plan to remain at the pipeline camp. Chase Iron Eyes is a resident and citizen of Standing Rock. He recently posted to Facebook urging the thousands at the reservation to stay “until this pipeline is dead, until DAPL & Law Enforcement are gone.”

“We may never get another opportunity to change our destiny,” Iron Eyes wrote. “We deserve a better way.”

Others are focusing on how the recent protests of the Dakota pipeline could be repeated elsewhere.

Protestor Breaks The Law On Facebook

Native and environmental groups are protesting an addition to the Alberta Clipper pipeline, which the State Department approved in 2009. It spans 1,000 miles from Hardisty, Alberta, in Canada, to Superior, Wisconsin. Protesters say the construction will harm the production of wild rice on tribal land.

Another project, the Trans Mountain pipeline, has proposed an addition that critics say could put nearby lakes at risk. It is owned by Kinder Morgan Energy Partners. The company aims to begin construction on the pipeline by 2017 and complete it by 2019.

In October, climate change activists tried to shut off pipelines in five places in the United States. A protester, Ken Ward, was arrested and charged with criminal trespass and burglary. His arrest came after he went live on Facebook while he closed a safety valve of the Trans Mountain pipeline.

Ward said his actions were in solidarity with Standing Rock.

Text Dependent Questions

Directions: Answer the questions below in complete sentences on loose leaf. Be sure to cite textual evidence.

1. Determine two or more central ideas in a text and analyze their development over the course of the text.

2. Determine the author’s point of view (perspective) or purpose in this text. Analyze how the author distinguishes his/her position from that of others.
A Home for Amigo

Dylan's parents are building a playhouse for his little sisters. He decides to make a house for his dog, Amigo. The doghouse will be the same design as the playhouse but smaller.

1. The floor of the doghouse will be 4 feet by 4 feet. The peak of the roof will be 312 feet high. Dylan draws on a grid the pieces he will need. Each square represents 1 square foot.

Use the formula for area of a rectangle to find the area of the floor, of each roof piece, and of each side piece. Use correct units. Check your answers by counting the squares.

Area of floor piece =

Area of roof piece =

Area of side piece =
2. The front and back pieces are composed of what shapes?
 _____________ and ______________

 Find the area of the front or back. (Don’t worry about the door.) Show your work.

3. What is the surface area of the whole doghouse? Show your work.
 \[SA = \] ______________

4. a. Now think about the volume of the doghouse.
 What 3-dimensional shape forms the bottom part of the doghouse? ______________

 b. What is the volume of that part of the doghouse?
 \[V = \] ______________

 c. The top of the doghouse is a triangular prism.
 The volume of the triangular prism is the area of the triangle times the length of the roof.

 \[
 \frac{1}{2} \times \text{base (4 ft)} \times \text{height}(1\frac{1}{2} \text{ ft}) \times \text{length of roof (4 ft)}
 \]

 What is the volume of the triangular prism?

 \[V = \] ______________
5. What is the volume of the whole doghouse?

\[V = \text{___________________________} \]

6. The playhouse for Dylan's sisters will be the same design as the doghouse except all the dimensions will be doubled.

a. What will the floor area of the playhouse be?

\[A = \text{___________________________} \]

b. How many times greater is the floor area of the playhouse than the floor area of the doghouse?

\[\text{___________________________} \]

\[\text{___________________________} \]

\[\text{___________________________} \]

7. Find the areas of each of the other parts of the playhouse.

a. Area of roof = \[\text{___________________________}\]

b. Area of side = \[\text{___________________________}\]

c. Area of front/back = \[\text{___________________________}\]

d. How do the playhouse areas compare to the corresponding areas of the doghouse?

\[\text{___________________________} \]

\[\text{___________________________} \]

\[\text{___________________________} \]

8. Find the entire surface area of the playhouse.

\[SA = \text{___________________________} \]

If your answer is not 4 times the surface area of the doghouse, check your work.
9. Fill in the missing numbers. Write the numbers with exponents.
 a. length in doghouse \(\times \) ____ = corresponding length in playhouse
 b. area in doghouse \(\times \) ____ = corresponding area in playhouse

10. Find the volume of the bottom part of the playhouse.
 \[V = \phantom{\text{expression here}} \]

11. What formula will give you the volume of the triangular prism
 that forms the top of the playhouse?
 Find the volume of the top of the playhouse.
 \[V = \phantom{\text{expression here}} \]

12. What is the volume of the whole playhouse?
 How does it compare to the volume of the whole doghouse?
 \[V = \phantom{\text{expression here}} \]

13. Fill in the missing numbers. Write the numbers with exponents.
 a. length in doghouse \(\times \) ____ = corresponding length in playhouse

 b. area in doghouse \(\times \) ____ = corresponding area in playhouse

 c. volume in doghouse \(\times \) ____ = corresponding volume in playhouse
8-year-old who is blind prepares for reading competition in L.A.

By Charlotte Observer, adapted by Newsela staff
06/17/2016

Just like the kids in the "Magic Tree House" books he's always reading, Amare Leggette will soon embark on the biggest adventure of his life. "I'm going to ride a flying bus," he says.

Actually, it'll be an airplane that takes Amare to Los Angeles, California, from his home in Charlotte, North Carolina. However, why not a flying bus? After all, in "Magic Tree House" books, siblings Jack and Annie use their tree house to travel through time and visit places like ancient Greece, an Amazon rainforest and a castle. When Amare gets to California, he plans to ride a boat out to sea, where he hopes to meet a treasure ship.

Amare is 8. He has curly black hair, and he loves reading and listening to stories. Last summer, he read 153 hours, the most of any incoming second-grader at Charlotte's Eastover Elementary. The accomplishment earned him an exciting prize — for one hour, he got to be principal of his school.

Blindness Hasn't Held Him Back

Now, his reading has earned him a bigger honor. In Los Angeles, he'll compete in the Braille Institute's Annual Braille Challenge. Amare, who is blind, is one of 50 finalists from the U.S. and Canada. He made the finals by scoring in the top 10 out of 310 students in his age group on the institute's test. The test measured reading comprehension, spelling and proofreading in braille. Braille is a form of writing for people who are blind, where letters are represented by raised dots on a page rather than shapes.

Amare is excited, but not so much about the Braille Challenge itself, which will require him to take three 30-minute tests. He is more excited about rides at the Universal Studios theme park and a visit to an air and space exhibit. "Air is for airplanes, space is for rockets," he explains. "I love to listen to rockets take off."

No one, including Amare's parents, Teresa Peterson and Kareem Leggette, knew he was blind when he was born. Then his newborn body temperature dropped, plunging him into an unconscious state known as a coma. Testing found the problem. Amare's pituitary gland, an organ at the base of his brain, was underdeveloped. Also, his optic nerve, which sends information from the eyes to the brain, was only one-fourth the normal size. Doctors could treat the problems caused by Amare's pituitary gland, but they could do nothing for his optic nerve. He is unable to see any form of light, Peterson says.

A Love Of Learning

Amare was nearly 3 before he talked, but when he started, he spoke full sentences. Peterson taught him multiplication when he was 3. At 5, he memorized the names of all 50 states. He also began attending Eastover, the only elementary school in his school district that teaches braille. Since kindergarten, Holly Jeffries has been his teacher. "She's amazing," Peterson says. "She does more than I'd ever expect."

According to Jeffries, Amare can read 150 words a minute. "I love him," she says. "I'm very proud of him."

Amare is lucky to have a teacher trained to instruct students who have problems with their vision, according to Sergio Oliva. Oliva runs the Los Angeles-based Braille Institute's national programs. In some school districts, there are not enough teachers trained in working with students like Amare. "We have
crazy, bizarre stories where sometimes a blind kid goes months without learning any real lesson," he says.

Promoting Braille Learning In Schools

The institute launched the Braille Challenge 16 years ago to promote the study of braille. Almost three-fourths of blind and visually impaired adults are unemployed. But most who are employed are good at reading braille. According to supporters of braille studies, understanding braille can be as important as being able to read is for people who can see.

When Peterson suggested that Amare enter the Braille Challenge, Jeffries made it happen. She is also attending the competition, as is Eastover principal Susan Nichols.

Peterson says that her son has only recently begun to realize what it means to be blind. He doesn't watch television and rarely hangs out with kids his age. Maybe that's why stories in books are so real to him. "It's like if he reads it, he truly believes it," Peterson says.

She asks Amare what will happen if he wins the competition. If he places first in his age group, he will win a device that allows users to download and read braille books. Given his reading appetite, it would be a great prize.

However, Amare has other ideas. "You get to buy me a boat," he says.

Text Dependent Questions

Directions: Answer the questions below in complete sentences on loose leaf. Be sure to cite textual evidence.

1. Determine two or more central ideas in a text and analyze their development over the course of the text.

2. Analyze the structure the author uses to organize this text, including how the major sections contribute to the whole and to the development of the ideas.
Model Integer Addition

Essential Question How can you use a number line to model addition of integers?

Unlock the Problem

In the first round of a game, Laura lost 5 points. Then she won 9 points in the second round. What is her score after the second round?

- How can you represent a loss of 5 points with an integer? _____
- How can you represent a gain of 9 points with an integer? _____

1. **Find −5 + +9.**

STEP 1 Draw a number line.

```
-8  -7  -6  -5  -4  -3  -2  -1  0  +1  +2  +3  +4  +5  +6  +7  +8
```

STEP 2 Start at 0. Move 5 units to the ______ to show −5.

```
-8  -7  -6  -5  -4  -3  -2  -1  0  +1  +2  +3  +4  +5  +6  +7  +8
```

STEP 3 From −5, move 9 units to the ______ to add +9.

```
-8  -7  -6  -5  -4  -3  -2  -1  0  +1  +2  +3  +4  +5  +6  +7  +8
```

−5 + +9 = ________

So, Laura’s score after the second round is ________.

Math Talk

Mathematical Practices

Will −5 + +8 be the same as +8 + −5? Explain.

Try This! Tell how to find the sum using a number line.

A. +6 + −8

B. −2 + −6
1. Use the number line to find \(4 + (-7)\).

Start at __________.
Move 4 units to the __________, then move 7 units to the __________.
The sum is __________.

Draw a number line to find the sum.

2. \((-3) + 1 __________\)
3. \((-5) + (-1) __________\)
4. \((4) + (-6) __________\)

On Your Own

Draw a number line to find the sum.

5. \((-8) + 4 __________\)
6. \((-3) + (-3) __________\)
7. \((7) + (-9) __________\)

8. \((5) + (-4) __________\)
9. \((-4) + (-3) __________\)
10. \((-2) + 10 __________\)

Problem Solving

11. In a football game, Jim’s team gained 7 yards on the first play, lost 2 yards on the second play, and lost 10 yards on the third play.
How many total yards did Jim’s team gain or lose after three plays?

12. In the morning the temperature was \(-3\)°F. By noon it had risen by 10°F.
What was the temperature at noon?
Model Integer Subtraction

Essential Question: How can you use a number line to model subtraction of integers?

Unlock the Problem

At 6:00 P.M., the temperature was 2°F. By midnight, it had dropped 5°F. What was the temperature at midnight?

Math Idea
- Move left on a number line to subtract a positive integer.
- Move right on a number line to subtract a negative integer.

Find 2 + 5.

STEP 1 Draw a number line.

Start at 0, move 2 units to the __________ to show 2.

STEP 2 From 2, move 5 units to the __________ to subtract +5.

2 + 5 = __________

So, the temperature at midnight was 7°F.

EXAMPLE Find 1 - -4.

STEP 1 Draw a number line. Start at 0, move 1 unit to the __________ to show 1.

STEP 2 From 1, move 4 units to the right to subtract -4.

So, 1 - 4 = __________.

Math Talk

Will 1 - 4 be the same as -4 + 1? Explain.
1. Use the number line to find \(-3 - (-3) \).

\[
\begin{array}{c}
\text{-9} \quad \text{-8} \quad \text{-7} \quad \text{-6} \quad \text{-5} \quad \text{-4} \quad \text{-3} \quad 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9
\end{array}
\]

Start at __________\.

Move 3 units to the __________\.

Move __________ on the number line to subtract \(-3\).

The difference is __________.

Draw a number line to find the difference.

2. \(-3 - (+4) \)

3. \(+5 - (+9) \)

4. \(+2 - (-4) \)

On Your Own

Draw a number line to find the difference.

5. \(-2 - (+2) \)

6. \(+1 - (-6) \)

7. \(-7 - (-7) \)

8. \(+4 - (-4) \)

9. \(+3 - (+6) \)

10. \(-8 - (-3) \)

Problem Solving

11. In a golf tournament, Tim got a score of \(+2\) in the first round and a score of \(-3\) in the second round. What was the difference in his scores between the first round and the second round?

12. The high temperature one day was \(-3^\circ F \). The low temperature was \(-7^\circ F \). What was the difference between the high and low temperatures that day?
Kayla is scuba diving to explore coral reefs. She makes 5 equal descents of 2 meters each. What is Kayla's elevation at the end of her descent?

Find -2×5.

By the Commutative Property, $-2 \times 5 = 5 \times -2$.

STEP 1 Draw a number line.

```
| -12 | -11 | -10 | -9 | -8 | -7 | -6 | -5 | -4 | -3 | -2 | -1 | 0 | 1 | 2 |
```

STEP 2 Start at 0. Show five groups of -2.

```
| -12 | -11 | -10 | -9 | -8 | -7 | -6 | -5 | -4 | -3 | -2 | -1 | 0 | 1 | 2 |
```

$5 \times -2 = -10$

So, Kayla's elevation at the end of her descent is ______ feet.

Try This! Tell how to find the product using a number line.

A. $+3 \times (-2)$

B. $-4 \times +6$

<table>
<thead>
<tr>
<th>Equation</th>
<th>Number Line</th>
</tr>
</thead>
<tbody>
<tr>
<td>$+3 \times (-2)$</td>
<td></td>
</tr>
<tr>
<td>$-4 \times +6$</td>
<td></td>
</tr>
</tbody>
</table>
1. Use the number line to find $2 \times (-6)$.

![Number Line Diagram]

Start at __________.
Show __________ groups of __________.
The product is __________.

Draw a number line to find the product.

2. $+4 \times (-1)$
3. $-5 \times +3$
4. $+7 \times (-2)$

On Your Own

Draw a number line to find the product.

5. $-4 \times +3$
6. $+3 \times (-7)$
7. $-2 \times +4$

8. $+5 \times (-6)$
9. $-9 \times +2$
10. $+6 \times (-8)$

Problem Solving

11. The Milam glacier is changing size at a rate of -3 feet per month. Write a number sentence to show the change in size of the glacier after 3 months.

12. An elevator starts at the lobby of a building and descends into the basement. The elevator’s height changes by -6 meters each second. What is the change in the elevator’s height after 3 seconds?
Values and Barriers

Read how Astros superstar George Springer conquered a stutter to find his voice.

Center fielder and power hitter George Springer definitely makes baseball look easy (he was named the 2017 World Series Most Valuable Player). Despite his athletic skills, the Houston Astros player had to overcome a major barrier as a child. He had a severe stutter that made him so self-conscious, he was afraid to speak in class. Today he's committed to helping kids who stutter by talking openly about his own experiences.

How did having a stutter as a kid make you feel?
When I was at school, having a stutter meant that I didn't want to participate in class. It was tough because I felt I knew the answers, but I just didn't want to participate.

When did you start to overcome your stutter?
I transferred from a large high school to a smaller school where I was forced to be active and wasn't able to hide behind a class of 30 or 35 kids. I had to participate and say the answers, no matter what. On top of it, I was fortunate enough to be around people who didn’t think anything of it. They judged me for who I was—not for what made me different.

"If you work toward a common goal no matter what...that is what sports is about and what life is about."

Why is Jackie Robinson an important role model for you?
Jackie Robinson is the model for courage, strength...I could go on. He endured pain and suffering but was able to overcome it and engage in a time when you weren’t encouraged to do that. He not only broke the color barrier but he started a movement in America to get things going in the right direction and make everyone equal.

Which of Jackie Robinson’s values do you use as a professional baseball player, or in other areas of your life?
Persistence defines me. If you work toward a common goal no matter what, getting through things, obstacles—whatever it may be—that is what sports is about and what life is about.

KEY TERMS

VALUE A belief that is important to you and helps to guide your life
BARRIER A challenge or obstacle that makes it difficult for you to move forward

JACKIE ROBINSON'S NINE VALUES

CITIZENSHIP
Making a contribution that improves the lives of others

COMMITMENT
Making a promise and following through on it

COURAGE
Doing what you know is the right thing even when it is hard to do

DETERMINATION
Staying focused on a plan even though the path to its end may be difficult

EXCELLENCE
Doing the best that you possibly can

INTEGRITY
Sticking to your values, regardless of what others think you should do

JUSTICE
Treating all people fairly, no matter who they are

PERSISTENCE
Working toward a goal and continuing to move forward even though you face obstacles or barriers

TEAMWORK
Working with other people toward a common goal

Cut out your own Jackie Robinson’s Nine Values bookmark.
Brainstorming Template

You may copy this brainstorming template as needed to organize your thoughts. Please include this worksheet with your finished project.
Brainstorming Template

You may copy this brainstorming template as needed to organize your thoughts. Please include this worksheet with your finished project.
Essay Prompt:

Jackie Robinson broke the color barrier in baseball in 1947. He believed a person needed these nine values to overcome obstacles: citizenship, determination, justice, commitment, excellence, persistence, courage, integrity, and teamwork. Write an essay explaining how you used one of Jackie’s nine values to overcome a barrier in your life.
Simplify Complex Fractions

Essential Question How can you simplify complex fractions?

A complex fraction is a fraction in which the numerator, denominator, or both contain fractions.

Jerrod swam $\frac{1}{2}$ mile in $\frac{1}{4}$ hour. The complex fraction $\frac{1}{\frac{1}{4}}$ is a ratio that represents Jerrod’s speed in miles per hour.

Simplify the complex fraction that shows Jerrod’s speed to find the unit rate.

STEP 1 Write the complex fraction as division.

$$\frac{1}{\frac{1}{4}} = \frac{1}{4} \div 4$$

STEP 2 Use the reciprocal of the divisor to write a multiplication problem. Multiply. Write your answer in simplest form.

$$\frac{1}{2} \div \frac{1}{4} = \frac{1}{\frac{1}{4}} \times \frac{4}{1} = 2$$

So, Jerrod’s speed was 2 miles per hour.

Example Simplify $\frac{2}{\frac{3}{5}}$.

STEP 1 Write the complex fraction as division.

$$\frac{2}{\frac{3}{5}} = 2 \div \frac{3}{5}$$

STEP 2 Use the reciprocal of the divisor to write a multiplication problem. Multiply. Write your answer in simplest form.

$$\frac{2}{3} \div \frac{4}{5} = \frac{2}{3} \times \frac{5}{4} = \frac{10}{12}$$

So, $\frac{2}{\frac{3}{5}} = \frac{10}{12}$.

- What operation does the bar between the numerator and denominator of a fraction represent?

Math Talk Mathematical Practices

Explain how you can use division to simplify a complex fraction.
Share and Show

Simplify \(\frac{\frac{4}{3}}{5} \).

1. Write the complex fraction using division: \(\frac{\frac{4}{3}}{5} = \) ____________

2. Use the reciprocal of the divisor to write a multiplication problem. Multiply. Write your answer in simplest form.

\[\frac{1}{4} \times \frac{3}{5} = \]

Simplify the complex fraction. Write your answer in simplest form.

3. \(\frac{\frac{4}{3}}{2} \)

4. \(\frac{\frac{4}{5}}{\frac{1}{5}} \)

5. \(\frac{\frac{1}{2}}{\frac{3}{4}} \)

On Your Own

Simplify the complex fraction. Write your answer in simplest form.

6. \(\frac{\frac{1}{4}}{\frac{2}{5}} \)

7. \(\frac{\frac{1}{6}}{\frac{2}{5}} \)

8. \(\frac{\frac{1}{8}}{\frac{7}{8}} \)

9. \(\frac{\frac{3}{2}}{\frac{3}{4}} \)

10. \(\frac{\frac{2}{9}}{\frac{2}{3}} \)

11. \(\frac{\frac{1}{5}}{\frac{3}{8}} \)

Problem Solving

12. Meg ran \(\frac{7}{8} \) mile in \(\frac{1}{8} \) hour. What was her running speed in miles per hour?

13. Kareem needs \(\frac{3}{4} \) cup of flour to bake a batch of cupcakes. He has \(\frac{1}{2} \) cup. What fraction of a batch can Kareem bake?
Identify Proportional Relationships

Essential Question: How can you identify a proportional relationship?

A proportional relationship is a relationship between two quantities in which the ratio of one quantity to the other quantity is constant.

Unlock the Problem

Kudzu is a fast-growing plant that is found in the southeastern United States. In summer, kudzu grows 12 inches per day. Is the relationship between the length of a kudzu plant and the number of days it has been growing a proportional relationship?

Find and compare the ratios of the length of a kudzu plant to the number of days it has been growing.

STEP 1 Make a table of values.

<table>
<thead>
<tr>
<th>Number of days</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length (in.)</td>
<td>12</td>
<td>24</td>
<td>36</td>
<td>48</td>
<td>60</td>
</tr>
</tbody>
</table>

STEP 2 Find and compare ratios.

\[
\frac{\text{length (in.)}}{\text{number of days}} = 12, 24, 36, 48, 60 = 12
\]

The ratios are constant.

So, the relationship is a proportional relationship.

Example

Judy drives 150 miles in 3 hours, 250 miles in 5 hours, and 400 miles in 8 hours. Is the relationship between distance and time a proportional relationship? If so, what is the unit rate?

Find and compare ratios: \[
\frac{\text{distance}}{\text{time}} = \frac{150}{3} = \frac{250}{5} = \frac{400}{8} = \text{______}
\]

The ratios are constant.

So, the relationship is a proportional relationship.

The unit rate is the ratio that gives the distance traveled in one hour. The unit rate is _______ miles per hour.
Share and Show

There are 4 mg of vitamin C in every cup of blueberries. Is the relationship between the amount of vitamin C and the number of cups a proportional relationship?

1. Make a table of values.

<table>
<thead>
<tr>
<th>Number of cups</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vitamin C (mg)</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. Find the ratios of the amount of vitamin C to the number of cups of blueberries.

3. Is the relationship a proportional relationship?

On Your Own

4. Each pound of dried cranberries costs $3.50. Is the relationship between cost and the number of pounds a proportional relationship?

5. The equation \(y = 2x \) represents the cost \(y \) of buying \(x \) pounds of cheese. Complete the table and plot the ordered pairs. Tell whether the relationship between \(y \) and \(x \) is a proportional relationship and describe what you notice about the points you plotted.

<table>
<thead>
<tr>
<th>Pounds, (x)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dollars, (y)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Cost of Cheese graph]

Problem Solving

6. An elevator rises 40 feet in 2 seconds, 100 feet in 5 seconds, and 180 feet in 9 seconds. Is the relationship between distance and time a proportional relationship? If so, what is the unit rate?

7. Drew types 45 words in 1 minute, 120 words in 3 minutes, and 184 words in 4 minutes. Is the relationship between the number of words and time a proportional relationship? If so, what is the unit rate?
Lesson 6

Analyze Proportional Relationships

Essential Question How can you identify the constant of proportionality in proportional relationships?

A proportional relationship is a relationship between two variables, \(x \) and \(y \), that can be written in the form \(y = kx \), or \(\frac{y}{x} = k \), where \(k \) is a nonzero number called the constant of proportionality. The graph of a proportional relationship is a straight line through the origin.

Unlock the Problem

Potato salad costs $3 per pound at a local deli. Write and graph an equation for the proportional relationship. Give the constant of proportionality.

Analyze the relationship.

STEP 1 Write an equation for the relationship. Let \(x \) represent the number of pounds of potato salad. Let \(y \) represent the cost of buying \(x \) pounds.

Cost = $3 times the number of pounds
\[y = 3 \cdot x \]

STEP 2 Make a table of values. Then graph the relationship by plotting several points and drawing a line through the points and through the origin.

<table>
<thead>
<tr>
<th>(x)</th>
<th>(y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
</tr>
</tbody>
</table>

STEP 3 Identify the constant of proportionality. The constant of proportionality in \(y = 3x \) is 3.

What operation will you use in your equation for this relationship?

- Explain why the equation \(y = x \) shows a proportional relationship. What is the constant of proportionality?
A shower uses 5 gallons of water per minute. Use this information for 1–3.

1. Let x represent the number of minutes. Let y represent the number of gallons of water used. Write an equation that relates x and y.

2. Give the constant of proportionality.

3. Graph the equation you wrote in Exercise 1.

On Your Own

Pencils cost $0.50 each. Use this information for 4–6.

4. Let x represent the number of pencils and let y represent the cost. Write an equation that relates x and y.

5. Give the constant of proportionality.

6. Graph the equation you wrote in Exercise 4.

Problem Solving

The graph shows the data about a typical whale’s heartbeats. Use the graph for 7–9.

7. Complete the table.

<table>
<thead>
<tr>
<th>x</th>
<th>1</th>
<th>2</th>
<th>4</th>
</tr>
</thead>
</table>
| y | | | 140| 160

8. Use the table to find the ratio $\frac{y}{x}$.

9. Write an equation that relates x and y.

GR14