Inverse Functions

Inverse function:
Given an equation in variables x and y, the inverse can be found by interchanging x and y.

Given a function $f(x)$, the inverse is denoted $f^{-1}(x)$.

Find the inverse of $f(x) = 2x + 4$.

Ways of thinking about inverse functions.

The inverse function of $f(x)$ ‘undoes’ what $f(x)$ does:

\[
f(x) = 2x + 4.
\]

\[
f^{-1}(x) = \frac{1}{2}x - 2.
\]

Find the function values of $f(x)$ for the values of x listed in the table.

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>-3</td>
<td></td>
</tr>
<tr>
<td>-2</td>
<td></td>
</tr>
<tr>
<td>-1</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Find the function values of $f^{-1}(x)$ for the values of x listed in the table.

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

The graph of $f^{-1}(x)$ is a reflection of the graph of $f(x)$ across the line $y = x$.

In the graph above, graph the line $y = x$, $f(x)$ and $f^{-1}(x)$.
Determining whether a function is one-to-one.

Recall: A graph is a function if it passes the vertical line test.

A function is invertible if it passes the horizontal line test.
(If a graph passes both the vertical and horizontal line tests, we say that it is one-to-one.)

Does the graph pass the horizontal line test?

Find the inverse of the function \(f(x) \) and the indicated value.

1. \(f(x) = 5x - 1 \) Find \(f^{-1}(9) \).

2. \(f(x) = \frac{3}{x + 8} \) Find \(f^{-1}(3) \).

3. \(f(x) = x^3 - 1 \) Find \(f^{-1}(7) \).

4. \(f(x) = \sqrt{x + 1} \) Find \(f^{-1}(3) \).
Find $f^{-1}(x)$ for the one-to-one function f and graph f and f^{-1} on the same coordinate axes.

5. $f(x) = \sqrt{x - 3}$

Find $f^{-1}(x)$.

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sketch:

6. $f(x) = \frac{1}{2x}$

Find $f^{-1}(x)$.

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sketch:
7. \(f(x) = x^3 - 4 \)

Find \(f^{-1}(x) \).

\[
\begin{array}{|c|c|}
\hline
x & y \\
\hline
\end{array}
\]

\[
\begin{array}{|c|c|}
\hline
x & y \\
\hline
\end{array}
\]

\[
\begin{array}{|c|c|}
\hline
x & y \\
\hline
\end{array}
\]

\[
\begin{array}{|c|c|}
\hline
x & y \\
\hline
\end{array}
\]

\[
\begin{array}{|c|c|}
\hline
x & y \\
\hline
\end{array}
\]

8. Verify that \(f(x) = \sqrt[3]{x-4} \) and \(f(x) = x^3 + 4 \) are inverses.

9. Verify that \(f(x) = \sqrt{x+2} \) and \(f(x) = x^2 - 2; x \geq 0 \) are inverses.
Inverse Relations
Find the inverse for each relation.

10. \{ (1, -3), (-2, 3), (5, 1), (6, 4) \}
11. \{ (-5, 7), (-6, -8), (1, -2), (10, 3) \}

Finding Inverses
Find an equation for the inverse for each of the following relations.

12. \(y = 3x + 2 \)
13. \(y = -5x - 7 \)
14. \(y = 12x - 3 \)

15. \(y = -8x + 16 \)
16. \(y = \frac{2}{3}x - 5 \)
17. \(y = -\frac{3}{4}x + 5 \)

18. \(y = -\frac{5}{8}x + 10 \)
19. \(y = \frac{1}{2}x + 8 \)
20. \(y = x^2 + 5 \)

21. \(y = x^2 - 4 \)
22. \(y = (x + 3)^2 \)
23. \(y = (x - 6)^2 \)

24. \(y = \sqrt{x} - 7, \ y \geq -7 \)
25. \(y = \sqrt{x + 5}, \ y \geq 0 \)
26. \(y = \sqrt{x + 8}, \ y \geq 8 \)

Verifying Inverses
Verify that \(f \) and \(g \) are inverse functions.

27. \(f(x) = x + 6, \ g(x) = x - 6 \)
28. \(f(x) = 5x + 2, \ g(x) = \frac{x - 2}{5} \)
Graph the inverse for each relation below (put your answer on the same graph).

29. \(f(x) = -3x - 9, \ g(x) = \frac{1}{3}x - 3 \)

30. \(f(x) = 2x - 7, \ g(x) = \frac{x + 7}{2} \)

31. \(f(x) = -4x + 8, \ g(x) = -\frac{1}{4}x + 2 \)

32. \(f(x) = \frac{1}{2}x - 7, \ g(x) = 2x + 14 \)

Graphing Inverses

Graph the inverse for each relation below (put your answer on the same graph).

33.

34.

35.

36.