MAGNETISM & ELECTROMAGNETISM
Lodestone - magnetite Fe_3O_4
Magnetic Domains

Domains Before Magnetization

Domains After Magnetization
Earth’s Magnetic Field
Magnetic Field- Bar Magnet
Unlike Poles Attract

Like Poles Repel
Magnetic Field - Horseshoe Magnet
Magnetic Dipole

Magnetic Field (B-Field)
Magnetic Monopoles

Do not exist!

In this way they differ from electric dipoles, which can be separated into electric monopoles.

i.e., No North without a South
Units

- Tesla (SI)
- N/(Cm/s)
- N/(Am)
- Gauss

1 T = 10^4 gauss
Magnetic Fields

- Formed by moving charge
- Affect moving charge
Magnetic Forces can...

- accelerate charged particles by changing their direction
- cause charged particles to move in circular or helical paths
Magnetic Forces cannot...

- change the speed or kinetic energy of charged particles
- do work on charged particles
Magnetic Force on moving Charged Particle

- **magnitude**: $F = qvB\sin\theta$
 - q: charge in Coulombs
 - v: speed in meters/second
 - B: magnetic field in Tesla
 - θ: angle between v and B

- **direction**: Right Hand Rule
What orientation is angle 0°?
What is $\sin 0^\circ$ equal to?

What orientation is angle 90°?
What is $\sin 90^\circ$ equal to?
Right hand Rule #1

Rule applies to + charges
Magnetic Force

Calculate the magnitude and direction of the magnetic force.

\[v = 300,000 \text{ m/s} \]

\[B = 200 \text{ mT} \]

\[q = 3.0 \mu \text{C} \]

\[\theta = 34^\circ \]
When v and B are at right angles to each other, the magnetic force is a centripetal force.

$$qvB = \frac{mv^2}{r}$$
Magnetic Force on Current-carrying Wire

\[F = I L B \sin \theta \]

- \(I \): current in Amps
- \(L \): length in meters
- \(B \): magnetic field in Tesla
- \(\theta \): angle between current and field
Force on a Current-Carrying Wire
Right Hand Rule # 2

Electric current \(I \)

Magnetic field \(B \)
Hand Rule

- Curve your fingers
- Place your thumb (which is presumably pretty straight) in direction of current.
- Curved fingers represent curve of magnetic field.
- Field vector at any point is tangent to field line.
For straight currents
Magnetic Field Created by a Solenoid - RHR #3
Electromagnet
Electric Generator

- How is this similar to an Electric Motor?
Generator Animation
Making Electricity
Making Motion
Magnetic Flux

- The product of magnetic field and area.
- Can be thought of as a total magnetic "effect" on a coil of wire of a given area.
Magnetic Flux

- $\Phi_B = BA\cos\theta$
- Φ_B: magnetic flux in Webers (Tesla meters2)
- B: magnetic field in Tesla
- A: area in meters2.
- θ: the angle between the area and the magnetic field.
Magnetic Flux

- A system will respond so as to **oppose changes in magnetic flux**.
- Changing the magnetic flux **can generate electrical current**.
Faraday’s Law of Induction

\[\varepsilon = -N \frac{\Delta \Phi}{\Delta t} \]

- \(\varepsilon \): induced potential (V)
- \(N \): # loops
- \(\Phi_B \): magnetic flux (Webers, Wb)
- \(t \): time (s)
A closer look ...

\[\varepsilon = -N \frac{\Delta \Phi}{\Delta t} \]

\[\varepsilon = -\Delta (BA\cos \theta) / \Delta t \]

➢ To generate voltage:
 ➢ Change B
 ➢ Change A
 ➢ Change \(\theta \)
Lenz’s Law

- The current will flow in a direction so as to oppose the change in flux.
- Use in combination with hand rule to predict current direction.
Increasing B-Field

Direction of current in Loop (end view)
Motional emf derivation
Motional Emf

\[\mathcal{E} = \frac{\Delta BA}{\Delta t} \]

\[\mathcal{E} = Bl \frac{\Delta x}{\Delta t} \]

\[\mathcal{E} = Blv \]
Challenge Problem

How large a force is needed to move the rod at a constant speed of 2 m/s? How much power is dissipated in the resistor?

\[50 \text{ cm} \]

\[3 \, \Omega \]

\[B = 0.15 \, \text{T} \]

\[v = 2 \, \text{m/s} \]