This course is the first of an integrated and investigative mathematics program designed to use patterns, modeling, and conjectures to build scholar understanding and competency in mathematics. The overarching goal of this course is to teach scholars how to learn math differently than they may have historically. Since this is the first year of an integrated program, scholars will be trained on methods of learning as well as content. The scholars will be expected to learn through collaboration, collection of data, experimentation, and conjectures. Technology tools will also play an important role in learning. By using technology to collect and model data, scholars will be able to make conjectures about the data and develop a robust understanding of the mathematical principles involved. This course aligns perfectly with the five goals of the UC Mathematics requirement. The scholars will learn mathematical sense making, make and test conjectures and justify conclusions, use mathematical models to represent real-world data, be able to provide clear and concise answers, and have computational and symbolic fluency. All five of these goals are embedded in both the curriculum and the core pedagogical beliefs of the Math Department.

This course is the second of an integrated and investigative mathematics program designed to use patterns, modeling, and conjectures to build scholar understanding and competency in mathematics. The scholars will be expected to learn through collaboration, collection of data, experimentation, and conjectures. Technology tools will also play an important role in learning. By using technology to collect and model data, scholars will be able to make conjectures about the data and develop a robust understanding of the mathematical principles involved. This course aligns perfectly with the five goals of the UC Mathematics requirement. The scholars will learn mathematical sense making, make and test conjectures and justify conclusions, use mathematical models to represent real-world data, be able to provide clear and concise answers, and have computational and symbolic fluency. All five of these goals are embedded in both the curriculum and the core pedagogical beliefs of the Math Department.

This is the third course of an integrated and investigative mathematics program designed to use patterns, modeling, and conjectures to build scholar understanding and competency in mathematics. The scholars will be expected to learn through collaboration, collection of data, experimentation, and conjectures. Technology tools will also play an important role in learning. By using technology to collect and model data, scholars will be able to make conjectures about the data and develop a robust understanding of the mathematical principles involved. This course aligns perfectly with the five goals of the UC Mathematics requirement. The scholars will learn mathematical sense making, make and test conjectures and justify conclusions, use mathematical models to represent real-world data, be able to provide clear and concise answers, and have computational and symbolic fluency. All five of these goals are embedded in both the curriculum and the core pedagogical beliefs of the Math Department.