Compound Interest Formula

The total amount of an investment, A, earning compound interest is

$$A(t) = P \left(1 + \frac{r}{n}\right)^{nt},$$

where P is the principal, r is the annual interest rate, n is the number of times interest is compounded per year, and t is the time in years.

Find the final amount for each investment.

1. 1000 at 6% interest compounded annually for 20 years
2. 1000 at 6% interest compounded semiannually for 20 years
3. 750 at 10% interest compounded quarterly for 10 years
4. 750 at 5% interest compounded quarterly for 10 years
5. 1800 at 5.65% interest compounded daily for 3 years
6. 1800 at 5.65% interest compounded daily for 6 years

INVESTMENTS The final amount for 5000 invested for 25 years at 10% annual interest compounded semiannually is $57,337$.

a. What is the effect of doubling the amount invested?
b. What is the effect of doubling the annual interest rate?
c. What is the effect of doubling the investment period?
d. Which of the above has the greatest effect on the final amount of the investment?

Continuous Compounding Formula

If P dollars are invested at an interest rate, r, that is compounded continuously, then the amount, A, of the investment at time t is given by

$$A = Pe^{rt}.$$

INVESTMENTS Sharon invests 2500 at an annual interest rate of 9%. How much is the investment worth after 10 years if the interest is compounded continuously?

INVESTMENTS An investment of 1500 earns an annual interest rate of 8.2%. Compare the final amounts after 5 years for interest compounded quarterly and for interest compounded continuously.